Guided Waves for Structural Health Monitoring

akronüüm: GW4SHM
algus: 2020-01-01
lõpp: 2023-12-31
 
programm: H2020 - Horisont 2020
alaprogramm: MSCA - Marie Skłodowska-Curie meetmed
instrument: MSCA-ITN-ETN - Euroopa koolitusvõrgustikud
projektikonkurss: H2020-MSCA-ITN-2019
projekti number: 860104
kestus kuudes: 48
partnerite arv: 12
 
lühikokkuvõte: Structural health monitoring (SHM) is essential to guarantee the safe and reliable operation of technical appliances and will be a key enabler to exploit emerging technologies such as remaining useful lifetime prognosis, condition-based maintenance, and digital twins. Particularly, SHM using ultrasonic guided waves is a promising approach for monitoring chemical plants, pipelines, transport systems and aeronautical structures. While substantial progress has been made in the development of SHM technology, current techniques are often realised only at lab-scale. Missing quantification of reliability hinders their practical application. The substantial effort for signal processing and of permanent transducer integration as well as the lack of efficient simulation tools to improve understanding of guided wave-structure interaction and to predict the capabilities of the system limit their widespread use. Training of PhD students specialised in SHM is limited and fragmented in Europe. The aim of this project is to combine for the first time efficient simulation and signal processing tools for SHM and to assess the reliability of the monitoring systems. The project will bring together partners from academia and industry and will train a new generation of researchers skilled in all aspects of SHM, enabling them to transform SHM research into practical applications. Focusing on aeronautics, petrochemistry and the automotive sector as initial pilot cases, we will develop SHM concept to assess the integrity of structures and create ready-to-use tools for industry and other SHM users. The strong collaboration between mathematicians, physicists and engineers aims to bring the capabilities and applicability of SHM methods to the next level. Our students will acquire multidisciplinary scientific expertise, complementary skills, and experience working in academia and industry. The outcome of the project will pave the way for integrating SHM into real-world engineering structures.
partneri jrk nr ja roll partneri nimi riik kontaktisik koduleht
1 koordinaator BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUEFUNG DE Jens PRAGER www.bam.de
2 partner COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES FR www.cea.fr
3 partner NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK TNO NL www.tno.nl
4 partner FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. DE www.fraunhofer.de
5 partner Tallinna Tehnikaülikool EE http://www.ttu.ee
6 partner RUHR-UNIVERSITAET BOCHUM DE www.ruhr-uni-bochum.de
7 partner IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK www.imperial.ac.uk
8 partner SAFRAN SA FR
9 partner JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN DE www.uni-frankfurt.de
10 partner KAUNO TECHNOLOGIJOS UNIVERSITETAS LT ktu.edu
11 partner ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA IT www.unibo.it
12 partner INSTITUTO DE TELECOMUNICACOES PT www.it.pt