abstract: |
5G!Drones aim is to trial several UAV use-cases covering eMBB, URLLC, and mMTC 5G services, and to validate 5G KPIs for supporting such challenging use-cases. The project will drive the UAV verticals and 5G networks to a win-win position, on one hand by showing that 5G is able to guarantee UAV vertical KPIs, and on the other hand by demonstrating that 5G can support challenging use-cases that put pressure on network resources, such as low-latency and reliable communication, massive number of connections and high bandwidth requirements, simultaneously. 5G!Drones will build on top of the 5G facilities provided by the ICT-17 projects and a number of support sites, while identifying and developing the missing components to trial UAV use-cases. The project will feature Network Slicing as the key component to simultaneously run the three types of UAV services on the same 5G infrastructure (including the RAN, back/fronthaul, Core), demonstrating that each UAV application runs independently and does not affect the performance of other UAV applications, while covering different 5G services. While considering verticals will be the main users of 5G!Drones, the project will build a software layer to automate the run of trials that exposes a high level API to request the execution of a trial according to the scenario defined by the vertical, while enforcing the trial’s scenario using the API exposed by the 5G facility, as well as the 5G!Drones enablers API deployed at the facility. Thus, 5G!Drones will enable abstracting all the low-level details to run the trials for a vertical and aims at validating 5G KPIs to support several UAV use-cases via trials using a 5G shared infrastructure, showing that 5G supports the performance requirements of UAVs with several simultaneous UAV applications with different characteristics (eMBB, uRLLC and mMTC). Using the obtained results, 5G!Drones will allow the UAV association to make recommendations for further improvements on 5G. |